Interference in Learning Internal Models of Inverse Dynamics in Humans
نویسندگان
چکیده
Experiments were performed to reveal some of the computational properties of the human motor memory system. We show that as humans practice reaching movements while interacting with a novel mechanical environment, they learn an internal model of the inverse dynamics of that environment. Subjects show recall of this model at testing sessions 24 hours after the initial practice. The representation of the internal model in memory is such that there is interference when there is an attempt to learn a new inverse dynamics map immediately after an anticorrelated mapping was learned. We suggest that this interference is an indication that the same computational elements used to encode the first inverse dynamics map are being used to learn the second mapping. We predict that this leads to a forgetting of the initially learned skill.
منابع مشابه
On-line Learning for Humanoid Robot Systems
Humanoid robots are high-dimensional movement systems for which analytical system identification and control methods are insufficient due to unknown nonlinearities in the system structure. As a way out, supervised learning methods can be employed to create model-based nonlinear controllers which use functions in the control loop that are estimated by learning algorithms. However, internal model...
متن کاملFast and Efficient Incremental Learning for High-Dimensional Movement Systems
We introduce a new algorithm, Locally Weighted Projection Regression (LWPR), for incremental real-time learning of nonlinear functions, as particularly useful for problems of autonomous real-time robot control that requires internal models of dynamics, kinematics, or other functions. At its core, LWPR uses locally linear models, spanned by a small number of univariate regressions in selected di...
متن کاملCoupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks
The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a co...
متن کاملInternal models for motor control and trajectory planning.
A number of internal model concepts are now widespread in neuroscience and cognitive science. These concepts are supported by behavioral, neurophysiological, and imaging data; furthermore, these models have had their structures and functions revealed by such data. In particular, a specific theory on inverse dynamics model learning is directly supported by unit recordings from cerebellar Purkinj...
متن کاملRole of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control.
This study focuses on the role of the motor cortex, the spinal cord and the cerebellum in the dynamics stage of the control of arm movement. Currently, two classes of models have been proposed for the neural control of movements, namely the virtual trajectory control hypothesis and the acquisition of internal models of the motor apparatus hypothesis. In the present study, we expand the virtual ...
متن کامل